Scientists awaken dormant enzymes to give artificial photosynthesis a boost

 人参与 | 时间:2024-09-22 10:30:55

An ability to recreate and scale up the process of photosynthesis, where plants convert sunlight into usable fuels, would mean huge things for our pursuit of renewable energy. Researchers around the world have made some promising advances of late, but one team of researchers from the University of Cambridge say they can produce better results by reactivating a natural mechanism that vanished through billions of years of plant evolution.

In nature, plants convert sunlight, carbon dioxide and water into carbohydrates, proteins and fats to power their existence, with oxygen produced as a byproduct. Experimental artificial photosynthesis systems, which include artificial leaves and moth-inspired photoelectrochemical cells, use advanced solar cells to split water into oxygen and hydrogen, which can theoretically be funneled into a fuel cell and used to create electricity.

The trouble is that the catalysts needed to trigger this process are often made from materials that are cost-prohibitive and toxic. This means that they can work as proof-of-concept technologies in the lab, but become problematic when scientists try to scale their creations up with a view to industrial use.

One avenue scientists, including those at the University of Cambridge, are investigating is what is known as semi-artificial photosynthesis. As the name suggests, this technique takes manmade components and marries them with natural ones to produce better outcomes. In this case, those natural components involve biological mechanisms discarded by plants through evolution due to the surplus energy they create.

"Natural photosynthesis is not efficient because it has evolved merely to survive so it makes the bare minimum amount of energy needed – around 1 to 2 percent of what it could potentially convert and store," says the University of Cambridge's Katarzyna Sokół, first author of the study.

顶: 5踩: 43749